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The Significance of Power
Avoid mistakenly rejecting the null hypothesis in statistical trials

THE CONCEPT OF “power” has long 

been overshadowed in statistical circles 

by its big brother, “significance.” Both 

parameters, chosen before a test, dictate 

the sample size and likelihood of making 

an erroneous conclusion when comparing 

two groups (see Table 1). The p-value or 

significance threshold is the first taught 

and most commonly used statistic. 

Significance sets the threshold for 

mistakenly rejecting the null hypothesis 

that both groups are similar when the null 

hypothesis is indeed true. This mistaken 

result is called a false positive (type I 

errors or α), and it means you’ve found a 

difference between two groups when re-

ally they are not different. 

Power, on the other hand, focuses on 

controlling the complementary testing 

problem to reduce false negatives (type II 

errors or β). Power determines how likely 

a test is to reject the null hypothesis when 

the null hypothesis is false.

When a statistical trial is conducted 

without enough power, it can lead to 

problems. A higher-power value indicates 

a less likely chance for a false negative. 

The power of a study is directly related to 

its sample size and effect size variability. 

In general, the greater the sample size 

and the lower the variability, the higher a 

study’s power. 

Both of these study variables, however, 

will increase time and cost. To completely 

eliminate any chance for false negatives 

and for the best study, you must test every 

possible option to the absolute physical 

limit of measurement. In reality, therefore, 

there is a balancing act between increas-

ing power through more samples and 

more precise and accurate measurements 

with budget, time and project logistical 

constraints. 

As power is a required part of testing, 

the study setup must reduce the risks 

of being underpowered. If a study is 

underpowered, the most direct issue that 

can arise is to refuse to reject the null 

hypothesis when, in fact, it is false. This 

means that there is a real difference in the 

two groups being compared, but the test is 

unable to detect it. 

A more nuanced issue with power 

comes in the form of reproducibility of 

results. One study may find significant 

differences between two groups, but 

when others attempt to achieve the same 

results, they do not find a difference. This 

could be a symptom of underpowered 

follow-up study.

As Figure 1 (p. 52) shows the greater 

the discrimination between your type I and 

type II errors, the higher the power and 

lower the significance level of the study, 

and the easier it is to discriminate between 

the null and alternative hypotheses.

In the first test (A), there is a high 

chance for type I and type II errors, as 

evidenced by the high overlap between the 

curves. In the second test (B), the study 

was designed with higher power (in-

creased sample size and lower measure-

ment variability), and there is much less 

overlap between the two groups.

Null hypothesis  
should not be rejected

Null hypothesis  
should be rejected

Reject null hypothesis   False positive = α 
type I error

  True negative = power

Do not reject null 
hypothesis

  True positive = 
confidence interval

  False negative = β 
type II error

Power and statistical significance   /   TABLE 1



Specifying α and β
Ideally, the sample size of an experiment 

(or statistical trial) is calculated a priori 

using investigator-chosen prespecified 

levels of significance and power. These 

are often a significance level α = 0.05 (5% 

error is our threshold or 95% confidence), 

and 1-β (or power) = 80% or 90%. 

In terms of the errors listed in Table 

1, this means you may wish to be 90% 

confident that you are rejecting the null 

hypothesis when it should be rejected, 

and only allowing a false negative rate of 

5% to reject the null hypothesis when it 

should not be rejected. 

For a sample size calculation, a priori 

one needs a value of α, a value of 1−β and 

an effect-size measure. The effect size is 

often the difference between means of 

two groups or the percentage change be-

tween groups. The sample size calculated 

using these parameters gives an investiga-

tor the minimal detectable effect in the 

study. 

Because the effect size may not be 

fixed and the variability may not be 

known, it may be important to calculate 

a table of sample sizes for a given α and 

β, varying the effect size and variability 

of measurement to optimize the study's 

design. There are sample-size calculators 

in most statistical packages and online 

(http://tinyurl.com/sample-size-calc) that 

can be tailored for the exact type of test 

being performed. 

The power example that follows shows 

how you might develop a sample-size 

strategy based on a fixed value of α and β. 

As the effect size (movement difference) 

increases and variability decreases, the 

required sample size per group decreases 

from a maximum of 20 per group (with 

largest variability and smallest movement 

difference) to a minimum or four per 

group at the opposite end of the spec-

trum. 

Suppose you have invented an easier 

appliance for orthodontic braces that 

accelerates the movement of teeth. Your 

hypothesis is that the new appliance will 

show between 0.5 and 1.25 mm more 

movement per month than the old appli-

ance, and the variability will be between 

0.20 and 0.50 mm per month. You will test 

this with a two-sided paired t-test with 

a significance level of α = 0.05 and 80% 

power. 

To achieve those set levels, you must 

have four to 20 subjects per treatment. To 

confidently declare that the new braces 

are better, you need the fewest patients if 

you have the greatest movement with the 

lowest variability. Conversely, you need 

the most patients if there is little differ-

ence in movement and a lot of variability 

(see Table 2).

Dangers of overpowering,  
underpowering
Using the braces example, suppose you 

decide that you expect the variability to be 

0.25-0.30 mm and the movement to be 0.75 

mm per month, and you enroll 10 patients 

per group for the study. At the end of the 

study, however, the movement is only 0.50 

mm per month and the variability greater 

than 0.40 mm.

Using your sample-size calculations, 

you needed to enroll 14 to 20 patients in 

the study. This indicates the sample size 

was too small, and the study is underpow-

ered. The completed 10-patient study will 

not have a statistically significant result at 

your set significance and power levels. 

Using this example, a more likely 

reason for an underpowered study is that 

Comparing the difference between  
2 distinct groups with low and high 
power   /   FIGURE 1

Group 1
Group 2
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Group 1
Group 2
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Test A Test B

Variability

Movement 
difference/month 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.5 mm 10 12 12 14 14 16 20

0.75 mm 8 10 10 12 12 14 18

1.0 mm 6 6 6 8 8 10 12

1.25 mm 4 4 4 6 6 8 8

Sample size per treatment required  
for movement difference and  
variability within appliance   /   TABLE 2
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you only have funding for 10 patients 

per group, regardless of the power and 

sample size estimates. After completing a 

study, you can calculate the actual power 

of the study given the actual effect size 

and variability. This is the post-hoc power 

and—while seldom reported in published 

results—can be helpful when designing 

future studies, especially when the original 

study is underpowered.

Overpowering a study by increasing 

the sample size has been called a waste 

of resources when it involves the use of 

humans or animals. But can too many 

observations ever be a bad thing? 

Studies are increasing in size as the 

prevalence of big data is seen in all areas 

of investigation. If the sample size is very 

large, everything may be statistically 

significant—but these results may not be 

important results from the study. 

As the sample size increases, the 

effect size and variability shrink, which 

gives the results more precision than 

can be measured with the available tools 

or have clinical usefulness in a new 

intervention.

In extreme cases, investigators can 

actually game the system and claim 

statistical significance simply by virtue of 

having an extremely large sample size, but 

their results are not clinically meaningful 

or actionable.

In some rare instances, overpower-

ing a study can be useful for examining 

outcomes more precisely. It may give 

investigators a result, however, that is 

statistically significant but not an impor-

tant difference. Table 3 illustrates these 

pitfalls. 

Well-balanced power
Although overshadowed by the p-value, 

power is an important aspect of study 

design, controlling the error of false 

negatives. As many studies are carefully 

designed to avoid falsely rejecting the null 

hypothesis, these studies also must ensure 

they do not falsely accept the null hypoth-

esis through power. 

Power is associated with significance 

levels, sample sizes and effect size 

variability. The best study will be well 

balanced among all four parameters, 

adjusting for the restrictions from the 

reality of data availability, budgets and 

deadlines.  QP
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Not a statistically  
significant difference

Statistically  
significant difference

Important difference   Underpowered =  
too small of a sample

  True negative

Unimportant difference   True positive   ?  Overpowered =  
too large of a sample

Pitfalls of underpowering and 
overpowering a study   /   TABLE 3
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Studies are increasing in 
size as the prevalence of big 
data is seen in all areas of  
investigation.

THREE’S NOT A CROWD
Read another Statistics Roundtable column from this trio of authors. ”So Many 
Variables, So Few Observations” appeared in the September 2013 edition of QP. 
Visit http://tinyurl.com/seaman-stats-round to access the article.


