
IDENTIFYING, ELIMINATING or 

controlling heterogeneity is a fundamental 

principle in many statistical techniques. 

Heterogeneity and its opposite, homoge-

neity, refer to how consistent or stable a 

particular data set or variable relationship 

are. Having statistical heterogeneity is 

not a good or bad thing in and of itself for 

the analysis; however, it’s useful to know 

to design, choose and interpret statisti-

cal analyses. Indeed, the comparison of 

heterogeneity often will be the outcome of 

interest, especially in quality fields.

There are pros and cons to having 

heterogeneity in a sample or analysis. 

Statisticians are trained to analyze vari-

ability (analysis of variance), decompose 

variability (variance components), control 

variability (modeling confounders and 

covariates) and to use other methods. In 

general, controlling for or lowering hetero-

geneity can remove potential confounders 

or noise to increase sensitivity for the 

measured outcomes. 

High heterogeneity, in contrast, is often 

more realistic for modeling the messy 

real world and may give better results or 

identify subpopulations. In clinical trials of 

new therapeutics, for example, homoge-

neous patient groups are sought to clearly 

identify efficacy. In market research and 

polling, however, heterogenous samples are 

requested to get a full picture. 

Traditionally, statisticians will aim for 

homogeneity of controlled experiments 

because it allows for straightforward testing 

and conclusions. While reducing variability 

and aiming for homogeneity in testing is 

important, recognizing and examining the 

diversity should play a key role in any analy-

ses. The reputation of heterogeneity has 

been increasing as evidenced in the meta-

analysis field’s phrase, “Yes, heterogeneity is 

your friend,” commonly used when examin-

ing and performing meta-analyses. Includ-

ing and even inviting variability in analyses 

ultimately can create stronger and more 

representative models and conclusions.

Ignoring heterogeneity:  
Anscombe’s quartet
Basic Anscombe data analysis:  

Anscombe introduces six data sets with 

two showing identical X summary statistics 

and four showing similar Y summary statis-

tics. In examining these summary statistics, 

we assume we understand quite a bit about 

the distribution of the data set. 

Table 1 gives the summary of four small 

data sets with similar means and standard 

deviations. The addition of the median 

(Table 2) provides more information show-

ing some differences in the distributions 

and differences from the mean values indi-

cating skewness in the data. Only after the 

raw data are examined do the differences 

become completely apparent, and when 

plotted against Y1 – Y4 do the differences 

in relationships between X and Y become 

completely transparent (Figure 1). 

Anscombe regression analysis: 

Anscombe created this data set to illustrate 

linear regression similarities with disparate 

data sets. His famous set of linear regression 

equations illustrates the perils of ignoring 

the variability in the data. Creating almost 

identical regression equations, Anscombe 

shows that highly heterogeneous data can 

deceive the researcher. The four regressions 

shown in Table 3 are all almost identical to y 

= 0.5x + 3 with a r-squared fit near 0.66. 

Based on the equations alone, you 

might assume the data came from the 

same source on four different times and 

represents a consistent output. Can you 

reasonably assume, however, that the data 

that generated these models are similar? 

In fact, the data are quite heterogeneous as 

shown in Figure 1. 

Equation one is a typical scatter plot for 

a linear regression, and equation two indi-

cates clear nonlinearity. Most interesting 

are equations three and four because they 

show data with clear outliers. Assuming 

these are part of a clinical study, investigat-

ing these points can identify patients with 

important characteristics, or simply inac-

curately entered data. An analysis strategy 

to eliminate these outlier data points, and 

analysis of equation two using a quadratic 

function will give different results than the 

initial four equations.

While Anscombe’s quartet1 is usually 

used to represent the limitations of linear 

regressions, the variability between and 
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Summary statistics for 
6 data sets   /   TABLE 1

X1 X4 Y1 Y2 Y3 Y4
Mean 9.00 9.00 7.50 7.50 7.50 7.50

SD 3.317 3.317 2.032 2.032 2.030 2.031

SD = standard deviation

Median for the  
6 data sets   /   TABLE 2

X1 X4 Y1 Y2 Y3 Y4

Median 9.00 8.00 7.58 8.14 7.11 7.04



within the data sets are a good study for 

heterogeneity. If equations one to three 

measured a different variable for a given 

x1, this demonstrates heterogeneity in the 

relationships of the variables. Within each 

equation, there are examples of heteroge-

neity. Equations one and two are examples 

of heterogeneity in the residuals to the 

regression, known as heteroscedasticity; 

the pattern in the heteroscedasticity of 

equation two also would indicate the poor 

fit for linear regression. 

For equations three and four, the outlier 

points may be interesting or mundane. It 

could simply (and often) be an entry mistake 

or calculation error. If it is a trustworthy data 

point, however, it is worthwhile to investi-

gate. These points may hint at underlying 

subpopulations that have a distinctly differ-

ent response (heterogeneity in the sample or 

independent variables), or the measured out-

come is distinctly different at that measure-

ment (heterogeneity in the function, output 

or dependent variable), or both. 

While it is often frustrating to find these 

issues in an analysis, heterogeneity can 

lead to new questions and conclusions 

that create better models and discoveries. 

For multivariate linear models, diagnostic 

statistics such as Cook’s D, leverage and 

residual analyses can point to issues with 

the relationship between independent and 

dependent variables.2 

Controlling heterogeneity:  
Using REMs in meta-analyses
The majority of meta-analyses are conduct-

ed using either fixed effects models (FEM) 

or random effects models (REM). The deci-

sion to switch from FEM to REM is often 

based solely on the values of Cochran’s 

Q-statistic or the I2 statistic. 

Cochran’s Q statistic represents the total 

variance between the studies, while I2 is a 

measure of how much heterogeneity there 

is between the studies.3 Researchers will 

use the REM if Cochran’s Q is significant or 

if the I2 statistic is large (greater than 50% is 

one suggested thresh-

old). The FEM assumes 

that all the studies have 

a “true” effect size that 

is identical and the only 

variation in a study’s 

results is sampling error. 

The REM assumes each 

study provides informa-

tion about different effect 

sizes and controls for this 

between-study variability 

in its summary values. 

When reporting results 

as an REM, researchers 

can assume they have 

controlled for heteroge-

neity between studies 

but have not explained 

why the studies vary. It is 

even possible that when 

switching from a FEM to 

a REM, the results will 

switch conclusions from 

favoring one treatment to 

favoring another.

In a meta-analysis comparing the 

persistence of asthma over and under age 

12, seven studies were identified and a 

risk difference (RD) (> age 12 - <= age 12) 

was synthesized over these studies. The 

results (see Figure 2) show that with the 

FEM, the overall effect was significant (p < 

0.001) and was negative (significantly lower 

persistence over age 12). For the REM, the 

overall effect was inconclusive and not 

significant (p = 0.513). Highly significant 

heterogeneity was seen with the variation 

in the RD attributable to heterogeneity = 

76% (Cochran’s Q statistic p < 0.0001). The 

REM was chosen as the appropriate model 

and presented by one of the authors. 

Selecting the appropriate model for re-

porting, however, should not be the final step 

in the process. Identifying possible causes of 

heterogeneity and analyzing the results—in-

cluding important covariates in the model—

should be part of the analysis plan. 

For this meta-analysis, several covariates 

were available: year of the study, location of 

the study, percentage of females in the study, 

lost to follow-up study and year of asthma 

onset. Because of the small number of stud-

ies, each was examined separately. Initially, 

a jackknife procedure omitting individual 

studies was performed, and the omission 

of one study (the only study from Iceland) 

reduced the heterogeneity to 51%.

After further examination, this study 

(with the largest positive effect size) had an 

imbalance of females and had many more 

patients lost to follow-up than the other six 

studies. The final decision of the authors 

was to include the REM as well as an 

extensive sensitivity analysis to identify the 

potential causes of heterogeneity.

Improving future studies
These examples illustrate the problem 

that simply examining results of statistical 
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4 linear regression 
equations with 
Anscombe’s data   /   TABLE 3

Equation 1: Y1 = 3.00 + 0.500 X1

Predictor Coef SE coef T P

Constant 3.000 1.125 2.67 0.026

X1 0.5001 0.1179 4.24 0.002

S = 1.23660 R-sq = 66.7%

Equation 2: Y2 = 3.00 + 0.500 X1
Predictor Coef SE coef T P
Constant 3.001 1.125 2.67 0.026

X1 0.5000 0.1180 4.24 0.002

S = 1.23721 R-sq = 66.6% 

Equation 3: Y3 = 3.15 + 0.486 X1
Predictor Coef SE coef T P
Constant 3.152 1.136 2.77 0.022

X1 0.4861 0.1191 4.08 0.003

S = 1.24948 R-sq = 64.9% 

Equation 4: Y4 = 3.07 + 0.496 X2
Predictor Coef SE coef T P
Constant 3.071 1.082 2.84 0.019

X2 0.4963 0.1134 4.38 0.002

S = 1.18948 R-sq = 68% 

Coef = coefficient 
P = p-value 

SE = standard error 
T = test statistic 



analyses—even those as simple as sum-

mary statistics—can hide heterogeneity 

in the data set. Several rules of thumb for 

statistical analyses can be suggested by 

these examples: 

1. Always examine your raw data. If the 

data set is large, take a random sample 

and examine the distribution.

2. When fitting a model, ensure that the 

relationships between the independent 

and dependent variables are linear (for 

general linear models) and don’t include 

outliers that are influencing the result-

ing regressions. Examine residuals and 

regression diagnostic measures.

3. Identify the possible causes of hetero-

geneity. Analyze your data with and 

without outliers, and attempt to identify 

why the data point is an outlier. Include 

covariates and confounders in your 

analyses to explain the heterogeneity in 

the model. 

Use the results of these sensitivity 

analyses to design improved studies in the 

future. QP
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Plots of Anscombe data   /   FIGURE 1
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